Hinweis

Externer Link: Wenn Sie auf diesen Link gehen, verlassen Sie die Seiten der Volkswagen AG. Die Volkswagen AG macht sich die durch Links erreichbaren Seiten Dritter nicht zu eigen und ist für deren Inhalte nicht verantwortlich. Es gelten dann gegebenenfalls etwaige Nutzungsbedingungen des Dritten. Volkswagen hat keinen Einfluss darauf, welche Daten auf dieser Seite von Ihnen erhoben, gespeichert oder verarbeitet werden. Nähere Informationen hierzu können Sie gegebenenfalls in der Datenschutzerklärung des Anbieters der externen Webseite finden.

Abbrechen

Fleet Knowledge  |  


The future lies in range

Pure electric vehicles have not taken a comprehensive hold in company fleets as yet – with combustion engine models slightly ahead on longer distances in terms of range and fuel supply system. But that is just a snapshot. Battery technology is advancing at breakneck speed and a number of new technologies are already in the starting blocks. We provide a general overview here.

Unforgettable, that trip from Frankfurt to Copenhagen back in 1988 on just a single tank of fuel. Or that surfing trip with friends to Portugal in the middle of the noughties: more than 2,000 kilometres – and just two refuel stops. Fond memories from the “oil age”. And today? It’s obvious: such stretches cannot be covered with an electric car without longer stops. But will that always be the case? Most definitely not …

 

A range of 500 kilometres is already possible
The heart of an electric car is not its drive. Research is ongoing on new electric motors and minor adaptations are being made continually to increase their efficiency. Some developers also sense that improvements could be made in power and torque density. But for now nobody in the automotive industry expects major leaps and a new approach that will change everything. Rather the battery now finds itself at the centre of attention. “The battery cell is the combustion chamber of the future”, reported Porsche CEO Oliver Blume recently at the virtual Volkswagen Power Day. It has a major influence on the range and charging time – and this is also where the most development potential lies. In fact, that sense of continual enhancement is already evident today. An Audi e-tron Sportback 55 quattro (power consumption in kWh/100 km: combined 24.3-21.6 (NEDC); CO2 emissions in g/km: 0; efficiency class: A+) has a range of up to 452 kilometres with a full battery according to the WLTP1), while a Volkswagen ID.4 Pro Performance (power consumption in kWh/100 km: combined 17.5-16.1 (NEDC); CO2 emissions in g/km: 0; efficiency class: A+) can even cover up to 520 kilometres2). Nonetheless, fleet vehicles, in particular, will either need to have more “in the tank” in the future or be able to charge faster.

 

Gradual improvements
Hope is provided by looking to Braunschweig, Salzgitter and San José in California. Take Braunschweig for example. Batteries are produced here not only for Volkswagen Group Components, but also for the entire Volkswagen Group brand family. In the site’s powerhouse, the advance development team for battery systems is also working on new solutions.

The department is headed by Dr Ingke-Christine Grau. The bioengineer and her team of designers, computational engineers and system developers test how new battery developments respond on given systems. There is a lot to consider here: Is the cooling system sufficient? Are there potential safety vulnerabilities? Can the electronics and control system be adapted? Every measure, no matter how small, is questioned and checked: “This is the only way we can move on to the next logical step in the team and therefore achieve a good result”, explains the developer Grau.

 

Innovative battery systems ensure greater range
As is often the case with research departments, an in-depth insight is quite difficult to gain here too, since ultimately much is bound by secrecy. But if vehicles from Volkswagen, Audi, SEAT and ŠKODA are driving around in a few years with an ultra-slim, cell-to-car battery system, you can be sure that Grau and her employees have tested the technology thoroughly over many months. The individual battery cells will then no longer be bundled like today or integrated in modules, rather they will be installed directly in the vehicle floor, laid bare and as an integrated part of the chassis design. The result: lower costs and weights and increased range.

Salzgitter, in turn, is the chosen home not only of one of six Volkswagen gigafactories for battery production in the future. Work is also ongoing in its Centre of Excellence on further development of the latest lithium-ion technology. “Naturally we are trying to develop a powerful, cost-effective, sustainably produced supercell”, says PhD chemist Tim Dagger as he describes his field of work in the Volkswagen battery research centre.

 

New constituents, new overall concepts
The current lithium-ion cells offer a wealth of optimisation potential, with the technology not exhausted by a long way yet. However, if heavy goods vehicles are to be powered electrically in the future, a different type of cell chemistry is needed. This is also something that Dagger’s colleagues are already working on intensively in Salzgitter.

That just leaves the faraway San José. What is being masterminded here sounds like a similarly far away future. The outlook is rosy however. Described as the “holy grail of battery research” by renowned Karlsruhe university professor and battery expert Maximilian Fichtner, work is ongoing here at the Volkswagen partner QuantumScape on the solid-state battery.

 

Charging times will also shorten
This technology involves replacing the current liquid electrolytes in the cell with inorganic solids. Apart from a longer service life, this technology holds the promise of significantly increased battery capacity for the same battery size. The developers are thus aiming to achieve a 30 to 40 per cent increase in the range. The market launch may be a while longer yet – but a non-stop trip to Copenhagen with an electric car from Hamburg would therefore no longer be beyond the realms of possibility.

To reach Lisbon without a longer break, on the other hand, requires a further significant decrease in charging times. But solid-state batteries give reason for hope here too. According to developers, the new technology will halve the charging time to around ten minutes. Before this possibly, the use of silicon instead of graphite anodes may allow the charging times of the current batteries to be reduced considerably. Porsche, in particular, is pressing ahead with this development and intends to use it to its advantage in the coming years.

 

… and there’s more
Other technologies worthy of mention here include the possible use of sulphur as a cathode, highly promising supercapacitors – and not just because of their name – as well as the especially eco-aware redox flow battery. Visions of the future, clearly, but enough to send the minds of the researchers virtually into overdrive. The “combustion chamber of the future” will therefore definitely not be lacking in fuel …

1)The range was determined on the rolling road test bed according to the Worldwide Harmonized Light Vehicles Test Procedure (WLTP) using the specification variant of the Audi e-tron Sportback 55 quattro most favourable in terms of range, with 86 kWh net battery energy content. The actual WLTP range values may vary depending on the equipment. The actual range achieved under real conditions varies according to driving style, speed, use of convenience features and auxiliary consumers, outside temperature, number of passengers/load and topography.


2)The range was determined on the rolling road test bed according to the Worldwide Harmonized Light Vehicles Test Procedure (WLTP) using the specification variant of the Volkswagen ID.4 Pro Performance most favourable in terms of range, with 77 kWh net battery energy content. The actual WLTP range values may vary depending on the equipment. The actual range achieved under real conditions varies according to driving style, speed, use of convenience features and auxiliary consumers, outside temperature, number of passengers/load and topography.
 

Status: 01. September 2021

© Volkswagen AG

Q7, fuel consumption in l/100 km (combined):11,0–7,8; CO₂ emissions in g/km (combined): 251–204; CO₂ class: G. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status 03.2024)
ID.7 Tourer Pro, power consumption in kWh/100 km: combined 16.8-14.5; CO₂ emission in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicle. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2024)
Superb, the official consumption and emission figures will not be available until the type approval process is concluded. (Status: 12.2023)
Enyaq 85 / Enyaq 85x, Enyaq 85: power consumption in kWh/100 km: combined 15.8-14.9; CO₂ emission in g/km: combined 0. Enyaq 85x: power consumption in kWh/100 km: combined 16.8-16.0; CO₂ emission in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle image shows special equipment. (Status: 12.2023)
Q4 Sportback e-tron, power consumption in kWh/100 km: combined 18,9–15,6 (WLTP); CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle image shows special equipment. (Status: 11.2023)
Audi S6 Limousine TDI, fuel consumption in l/100 km (combined): 7,3–6,9; CO₂ emissions in g/km (combined): 191–182. Consumption and emission values are only available according to WLTP and not according to NEDC for the vehicle. (Status: 10.2023)
Audi S6 Avant TDI, fuel consumption in l/100 km (combined): 7.5–7.1; CO₂ emissions in g/km (combined): 196–187. Consumption and emission values are only available according to WLTP and not according to NEDC for the vehicle. (Status: 10.2023)
Audi S7 Sportback TDI, fuel consumption in l/100 km (combined): 7.5–7.1; CO₂ emissions in g/km (combined): 195–186. Consumption and emission values are only available according to WLTP and not according to NEDC for the vehicle. (Status: 10.2023)
Porsche Taycan 4, power consumption in kWh/100 km: combined 24.8–19.6; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:07.2023)
Audi e-tron GT quattro, power consumption in kWh/100 km: combined 21.6–19.6; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:07.2023)
Born 170 kW (231 PS) 77 kWh, power consumption in kWh/100 km: combined 17.5-15.7; CO₂ emissions in g/km: kombiniert 0; electric range (combined): 496-552 km (527-551 km for 5 seater) (WLTP). Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:07.2023)
Tavascan, vehicle image shows optional equipment. (Status: 04.2023)
Vehicle no longer available for order, no consumption and emission data are available.
Golf Alltrack, fuel consumption in l/100 km: combined 5.9–5.6; CO₂ emissions in g/km: combined 154-146. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Audi R8 Spyder, fuel consumption in l/100 km: combined 13.9–13.4; CO₂ emissions in g/km: combined 316-305. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Polo GTI, fuel consumption in l/100 km: combined 7.1–6.8; CO₂ emissions in g/km: combined 161-153. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Leon CUPRA 300, no longer available for order. (Status: 03.2023)
Audi e-tron, power consumption in kWh/100 km: combined 24.3–22.0; CO₂ emissions in g/km: combined 0: efficiency class: A+++. Vehicle images show special equipment. (Status: 09.2019)
A6 Avant TFSI e quattro, fuel consumption in l/100 km: combined 1.6–1.3; power consumption in kWh/100 km: combined 21.5–19.8; CO₂ emissions in g/km: combined 37-30. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
SEAT Leon e-Hybrid, currently not available. (Status: 03.2023)
Arteon eHybrid and Arteon Shhoting Brake eHybrid, Arteon eHybrid: fuel consumption in l/100 km: combined 1.4–1.1; power consumption in kWh/100 km: combined 16.0–14.7; CO₂ emissions in g/km: combined 31-25. Arteon Shooting Brake eHybrid: fuel consumption in l/100 km: combined 1.4–1.2; power consumption in kWh/100 km: combined 16.2–15.0; CO₂ emissions in g/km: combined 32-26. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicles. Vehicle images show special equipment. (Status: 03.2023)
T-Roc R, fuel consumption in l/100 km: combined 9.1–8.6; CO₂ emissions in g/km: combined 205-196. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:03.2023)
ID.4, ID.4 Pure Performance: power consumption in kWh/100 km: combined 17.9–16.7; CO₂ emissions in g/km: combined 0. ID.4 Pro Performance: power consumption in kWh/100 km: combined 18.6–16.4; CO₂ emissions in g/km: combined 0. ID.4 Pro 4MOTION: power consumption in kWh/100 km: combined 19.3–17.1; CO₂ emissions in g/km: combined 0.Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Enyaq iV and Enyaq Coupé iV, Enyaq iV: power consumption in kWh/100 km: combined 17.1–15.8; CO₂ emissions in g/km: combined 0. Enyaq Coupé iV: power consumption in kWh/100 km: combined 16.9–15.4; CO₂ emissions in g/km: combined 0.Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Motorsports vehicle, not available as a production model, no consumption and emission data are available.
ID.4 GTX, power consumption in kWh/100 km: combined 19.3–17.2 (WLTP); CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Amarok PanAmericana, fuel consumption in l/100 km: combined 10.5–10.2; CO₂ emissions in g/km: combined 274-267. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:03.2023)
ID.3, power consumption in kWh/100 km: combined 16.5–15.2; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 07.2023)
Audi Q8 e-tron, combined power consumption in kWh/100 km: 24.4–20.1(WLTP); CO₂ emissions (combined) in g/km: 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 12.2022)
Superb, official consumption and emission figures are not yet available, as the type approval process has not yet been completed.
ID. Buzz and ID. Buzz Cargo, ID. Buzz Pro: power consumption in kWh/100 km: combined 21.8 - 20.6; CO₂ emissions in g/km: combined 0. ID. Buzz Cargo: power consumption in kWh/100 km: combined 22.3-20.3; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not NEDC are available for the vehicles. Fuel consumption and CO₂ emissions data with ranges depending on the vehicle equipment selected. Vehicle illustrations show optional equipment.
ID.5 Pro and ID.5 Pro Performance, Power consumption in kWh/100 km: combined 18.4-16.1; CO2 emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not NEDC are available for the vehicles. Fuel consumption and CO2 emission data with ranges depending on the equipment selected for the vehicles. Vehicle illustration shows optional equipment.
Image shows concept vehicle/study, the vehicle is not available as a production model, no consumption and emission data are available.
ID.5 Pro, power consumption in kWh/100 km: combined 16.2; CO2 emissions in g/km: 0; efficiency class: A+++.Vehicle image shows optional equipment. (Status: 11.2021)
ID.5 GTX, Power consumption in kWh/100 km: combined 17.1; CO₂ emissions in g/km: 0; efficiency class: A+++. Vehicle image shows special equipment. (Status: 05.2022)
Audi e-tron, power consumption in kWh/100 km: 24.3–22.0 combined; CO2-emission combined in g/km: 0; Efficiency class: A+++. Vehicle image shows optional equipment. (Status: 09.2019)
ID.4 Pro Performance, power consumption in kWh/100 km: 16.0–14.8 combined; CO2-emission combined in g/km: 0; Efficiency class: A+++. Vehicle image shows optional equipment. (Status: 02.2021)
Q5 Sportback, fuel consumption in l/100 km: Combined 7.6-4.7; CO2 emissions in g/km: Combined 182-123; efficiency class: C-A+. Vehicle image shows optional equipment. (Status: 02.2021)
Caddy Cargo, Fuel consumption in l/100 km: Combined 5.8-4.4; CO₂ emissions in g/km: Combined 131-117. Vehicle image shows optional equipment. (Status: 02.2021)
OCTAVIA COMBI SCOUT 1,5 TSI DSG e-TEC 110 kW, fuel consumption in l/100 km: Urban 6.1, extra-urban 4.2, combined 4.9; CO2 emissions in g/km: combined 112; efficiency class: A. Vehicle image shows optional equipment. (Status: 02.2021)
SEAT Leon Sportstourer e-HYBRID, power consumption in kWh/100 km: Combined: 15.5–15.0; electricity consumption/petrol in l/100 km: Combined 1.3–1.2; CO2 emissions in g/km: Combined 29–27; efficiency class: A+. Vehicle image shows optional equipment. (Status: 02.2021)
SEAT Leon e-HYBRID, power consumption in kWh/100 km: Combined 15.4–14.9; fuel consumption/petrol in l/100 km: Combined 1.3–1.2; CO2 emissions in g/km: Combined 29–27; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
SEAT Tarraco e-HYBRID, power consumption in kWh/100 km: Combined 14.5; fuel consumption/petrol in l/100 km: Combined 1.8; CO2 emissions in g/km: Combined 41; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
Audi Q4 e-tron , power consumption in kWh/100 km: Combined 17.3–15.8 (NEDC); Combined 19.0–17.0 (WLTP); CO₂ emissions in g/km: 0; efficiency class A+. Vehicle image shows optional equipment. (Status: 05.2021)
Octavia RS iV, fuel consumption in l/100 km: combined 1.5; power consumption in kWh/100 km: combined 11.2; CO2 emissions in g/km: combined 33; efficiency class: A+. Vehicle image shows optional equipment.
Octavia Combi RS iV, fuel consumption in l/100 km: combined 1.5; power consumption in kWh/100 km: combined 11.4; CO2 emissions in g/km: combined 34; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
OCTAVIA COMBI iV, fuel consumption in l/100 km: combined 1.4; power consumption in kWh/100 km: combined 11.6; CO₂ emissions in g/km: combined 31; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
CUPRA Born, power consumption in kWh/100 km: combined 16.0–15.0; CO₂ emissions in g/km: 0; efficiency class: A+. Vehicle image shows optional equipment. (Status: 09.2021)
Q4 Sportback e-tron, power consumption (NEDC) in kWh/100 km: combined1) 17.9–15.6; CO₂ emissions in g/km: combined1) 0; efficiency class: A+. Vehicle images show special equipment. (Status: 09.2021)
ŠKODA ENYAQ iV 80x, Power consumption in kWh/100 km: 16.1 combined; CO2-emission combined in g/km: 0; Efficiency class: A+. Vehicle image shows optional equipment. (Status: 09.2021)
ID.4 GTX, Power consumption in kWh/100 km: 18.2-16.3 combined; CO2-emission combined in g/km: 0; Efficiency class: A+++. Vehicle image shows optional equipment. (Status: 10.2021)
ID.5 GTX, power consumption in kWh/100 km: combined 17.1 – 15.6; CO₂ emissions combined in g/km: 0. Efficiency class: A+++; Vehicle image shows optional equipment.
ID.5 Pro and ID.5 Pro Performance, power consumption in kWh/100 km: combined 15,9 – 14,6; CO₂ emissions combined in g/km: 0; Efficiency class: A+; Vehicle image shows optional equipment. (Status: 06.2022)
CUPRA Formentor 2.0 TDI, fuel consumption in l/100 km: combined 5.1-4.3; CO₂ emissions in g/km: combined 135-113; efficiency class: B-A.Vehicle image shows optional equipment. (Status: 05.2022)
Audi S8 TFSI, fuel consumption in l/100 km: combined 10.8-10.7; CO₂ emissions in g/km: combined 246-245; efficiency class: E.¹⁾ Vehicle image shows optional equipment. (Status: 05.2022)
ID.3 1ST, power consumption in kWh/100 km: combined 15,4 – 13,5; CO₂ emissions combined in g/km: 0; Efficiency class: A+; Vehicle image shows optional equipment. (Status: 09.2021)
ŠKODA ENYAQ iV 80 , electricity consumption in kWh/100 km: Combined 13.6; CO2 emissions in g/km: 0; efficiency class: A+++. Vehicle image shows special equipment. (Status: 02.2022)
Golf GTI, (180 kW / 245 PS) (NEDC) fuel consumption in l/100 km: urban 9.0-8.6 / extra-urban 5.6-5.3 / combined 6.9-6.5; CO₂ emissions in g/km (combined): 157-149; efficiency class: D-C. Vehicle image shows special equipment. (Status: 05.2021)